

### **Product description**

The Lifting Anchor is specifically designed for use with a ball supporting bolt. The lifting anchor can be used to transport prefabricated wall modules. The fact that it is used with screws means the anchor can be used several times.

### **Material**

SJ235

### **Advantages**

- Simple assembly
- Reusable
- Can be used in Glue-laminated timber beams and cross-laminated timber
- Transporting large loads





### **Product table**

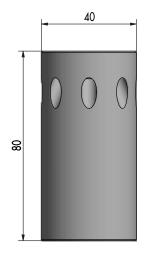
| Lifting Anchor Ø 40 mm |                |                               |                  |    |  |  |
|------------------------|----------------|-------------------------------|------------------|----|--|--|
| Art. no.               | Designation    | Dimensions [mm] <sup>a)</sup> | Number of screws | PU |  |  |
| 944892                 | Lifting Anchor | 60 x Ø 40                     | 8                | 4  |  |  |
| a) Height x Diameter   |                |                               |                  |    |  |  |
|                        |                |                               |                  |    |  |  |

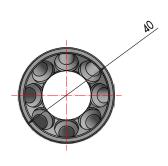
| Ball supporting bolt |                      |                               |         |         |         |    |
|----------------------|----------------------|-------------------------------|---------|---------|---------|----|
| Art. no.             | Designation          | Dimensions [mm] <sup>0)</sup> | F1 [kN] | F2 [kN] | F3 [kN] | PU |
| 944893               | Ball supporting bolt | 50 x Ø 20                     | 10      | 8,5     | 6,5     | 1  |
| a) Height v Nigmeter |                      |                               |         |         |         |    |



This product is subject to important conditions!

Please also watch our video at www.eurotec.team and follow the instructions for use.


Page 1 of 11






## **Drawings**

Lifting Anchor





Ball supporting bolt



| $d_1$ | l, | $d_2$ | $d_3$ | d <sub>4</sub> min. | l <sub>2</sub> |      | <b> </b> 4 | <b>I</b> <sub>5</sub> | l <sub>6</sub> | l <sub>7</sub> | l <sub>8</sub> | x min.* | x max.* | D H11 | F, kN* | F <sub>2</sub> kN* | F <sub>3</sub> kN* |
|-------|----|-------|-------|---------------------|----------------|------|------------|-----------------------|----------------|----------------|----------------|---------|---------|-------|--------|--------------------|--------------------|
| 20,0  | 50 | 24,50 | 30,0  | 25,00               | 19,70          | 36,5 | 52,0       | 32,6                  | 36             | 56             | 114,0          | 1,5     | 25      | 20,0  | 10,0   | 8,5                | 6,5                |

<sup>\*</sup> with five-fold protection against breakage

Page 2 of 11



## Operating instructions for the ball supporting bolt

#### Warning!

Ball supporting bolts are designed for lifting and holding individual loads (not people!). In addition, they are not suitable for continuous load rotation.

Contamination (e.g. grinding sludge, oil and emulsion deposits, dust, etc.) can impair the function of ball supporting bolts.



Damaged ball supporting bolts can put people's lives at risk. Before each use, ball supporting bolts must be inspected for visible defects (e.g. deformations, fractures, cracks, damage, missing balls, corrosion, function of the unlocking mechanism).

Damaged ball supporting bolts must be withdrawn from further use.

The ball carrier bolts have been tested by TÜV.

### Handling and loading

Press the button (A) to release the balls. The balls are locked again by releasing the button (A).

Please note: The button (A) is locked when the spring force has caused it to spring back to its original position. Do not press the button when loaded!

The load values F1/F2/F3 (see page 2) apply to lifting in a steel receptacle and x min. = 1.5 mm.

### **Maintenance**

Ball supporting bolts must be subjected to a safety inspection by a competent person at least once a year.

### Visual inspection

Deformations, fractures, cracks, missing / damaged balls, corrosion, screw connection damage on the shackle.

### **Functional test**

The balls' locking and unlocking mechanism must close automatically by spring force. Full shackle mobility is guaranteed.

### Use

The Lifting Anchor must only be used by competent staff.





## Original EC conformity mark

The product complies with the regulations set down in the EC Directive 2006/42/EC.

 $(\epsilon)$ 

Manufacture\*: Erwin Halder KG
Address\*: Erwin-Halder-Straße 5-9

88480 Achstetten-Bronnen

Germany

Make: Ball supporting bolt

Type: EH 22350 Applied standards: DIN EN 13155

S. Halder

Achstetten-Bronnen, December 22, 2016 Stefan Halder, General Manager

### Maintenance instructions Hoisting device

#### Maintenance:

The hoisting device must be subjected to a safety inspection by a competent person at least once a year.

#### Visual inspection:

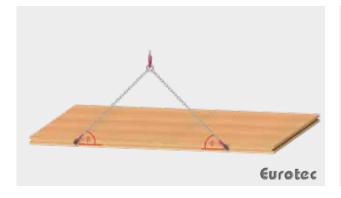
The hoisting device must be checked before each use. If there are any indentations in the material due to the ball bearing bolt, corrosion, fractures, damages, tears and deformations of any kind, the hoisting device must be replaced.

Contamination (e.g. grinding sludge, oil and emulsion deposits, dust, etc.) can impair the function of the hoisting device. In case of contamination, the component must be cleaned. Standard commercial cleaning agents can be used. Lubricants must be avoided.

## Instructions for use

The S235JR grade steel hoisting device, in accordance with EN 10025-2, is used to connect wooden structures designed in accordance with EN 1995-1-1:2008 Eurocode 5 - Design of timber structures - Part 1-1: General - Common rules and regulations for the building industry were designed and engineered. It may only be used for static or quasi-static loads. Connections with the Hoisting Device are used as structural timber connections and for the transport and assembly of timber components made of laminated timber or CLT. The minimum cross-section thickness for walls and beams is 100 mm. The minimum distances between the edges of the connectors parallel to the component plane is 200 mm. The values in the table apply to characteristic raw densities of at least 350 kg/m³ for CLT and 385 kg/m³ for BSH. The table values are only valid for lifting or assembly states. Do not use a hammer directly to drive the hoisting device into the wood. A separation layer must be used to prevent damage to the hoisting device. The hoisting device may only be used with the corresponding 6 x 60 or longer according to EN14952. The component is zinc-nickel coated. Zinc-nickel coatings are resistant to the initial corrosion of base metals (according to DIN EN ISO 9227) for more than 1000 hours in the salt spray test (NSS).

Page 4 of 11

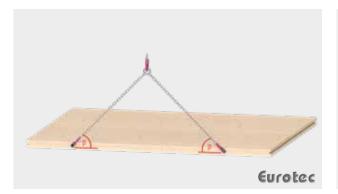

<sup>\*</sup>Responsible for documentation



### Horizontal wall or beam: Set upright, then lift

| Glue-laminated timber beams |                                           |              |                   |  |  |
|-----------------------------|-------------------------------------------|--------------|-------------------|--|--|
| Connection in the           | Connector                                 | Stop bracket | Total weight [kg] |  |  |
|                             | Connector                                 | β            | with two strands  |  |  |
|                             |                                           | 30°          | 488               |  |  |
|                             |                                           | 45°          | 581               |  |  |
| Side area                   | Lifting Anchor Ø 40 mm + 8 x VSS 6 x 60   | 60°          | 626               |  |  |
| Side area                   | LITHING ANCHOR & 40 MINI + 6 X VSS 6 X 60 | 75°          | 647               |  |  |
|                             |                                           | β            | with n strands    |  |  |
|                             |                                           | 90°          | n x 327           |  |  |

| Glue-laminated timber wall |                                          |              |                   |  |  |
|----------------------------|------------------------------------------|--------------|-------------------|--|--|
| Connection in the          | Connector                                | Stop bracket | Total weight [kg] |  |  |
| Connection in the          | Connector                                | β            | with two strands  |  |  |
|                            |                                          | 30°          | 255               |  |  |
|                            |                                          | 45°          | 360               |  |  |
| End arain area             | Lifting Anchor Ø 40 mm + 8 x VSS 6 x 60  | 60°          | 441               |  |  |
| End grain area             | LITHING ANCHOL & 40 MIN + 6 X Y55 6 X 60 | 75°          | 492               |  |  |
|                            |                                          | β            | with n strands    |  |  |
|                            |                                          | 90°          | n x 255           |  |  |








### Horizontal wall or beam: Set upright, then lift

| CLT wall or beam  |                                           |              |                   |  |  |
|-------------------|-------------------------------------------|--------------|-------------------|--|--|
| Connection in the | Connector                                 | Stop bracket | Total weight [kg] |  |  |
|                   | Connector                                 | β            | with two strands  |  |  |
|                   |                                           | 30°          | 444               |  |  |
|                   |                                           | 45°          | 528               |  |  |
| End arain araa    | Lifting Anchor Ø 40 mm + 8 x VSS 6 x 60   | 60°          | 569               |  |  |
| End grain area    | LITHING ANCHOL & 40 HIRL + 0 X 133 0 X 00 | 75°          | 588               |  |  |
|                   |                                           | β            | with n strands    |  |  |
|                   |                                           | 90°          | n x 297           |  |  |



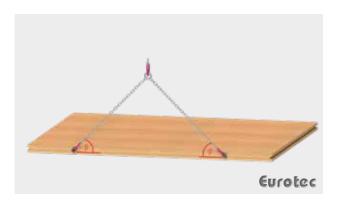


#### Notes:

- The tables are based on the expert evaluation report entitled "Loadcarrying Capacity of Connections with E.u.r.o. Tec Lifting Anchors" by H.J. Blaß, 30/03/2020.
- The tables illustrate the 'Setting upright and subsequently lifting a horizontal wall or horizontal beam' load case (lifting from a horizontal position leading to vertical suspension).
- The connectors must be screwed into the components' centre plane flush, plus perpendicular to the surfaces of the narrow sides and side or end grain areas.
- According to the above-mentioned expert report, a vibration coefficient of min.  $\varphi = 2.0$  must be used.
- The values stated in the table take a vibration coefficient of  $\varphi = 2.0$  into account. For deviating vibration coefficients, the table values must be multiplied by the factor  $2.0/\varphi$ .
- Whether transverse tensile reinforcement is required for lifting depends on the component to be lifted and must be decided by the manufacturer of the component to be lifted.






### Vertical wall or beam: Lift

| Glue-laminated timber beams |                                          |              |                   |  |  |
|-----------------------------|------------------------------------------|--------------|-------------------|--|--|
| Connection in the           | Connector                                | Stop bracket | Total weight [kg] |  |  |
|                             | Connector                                | β            | with two strands  |  |  |
|                             |                                          | 30°          | 659               |  |  |
|                             |                                          | 45°          | 929               |  |  |
| Side area                   | Lifting Anchor (4.40 mm + 9 v VCC 4 v 40 | 60°          | 929               |  |  |
| Side area                   | Lifting Anchor Ø 40 mm + 8 x VSS 6 x 60  | 75°          | 929               |  |  |
|                             |                                          | β            | with n strands    |  |  |
|                             |                                          | 90°          | n x 464           |  |  |

| Glue-laminated timber wall |                                         |              |                   |  |  |
|----------------------------|-----------------------------------------|--------------|-------------------|--|--|
| Connection in the          | Connector                               | Stop bracket | Total weight [kg] |  |  |
| Connection in the          | Connector                               | β            | with two strands  |  |  |
|                            |                                         | 30°          | 288               |  |  |
|                            |                                         | 45°          | 482               |  |  |
| [m]                        | 1:fr: Ah 0 40 0 VCC / /0                | 60°          | 759               |  |  |
| End grain area             | Lifting Anchor Ø 40 mm + 8 x VSS 6 x 60 | 75°          | 1170              |  |  |
|                            |                                         | β            | with n strands    |  |  |
|                            |                                         | 90°          | n x 743           |  |  |

| CLT wall or beam  |                                           |              |                   |  |  |
|-------------------|-------------------------------------------|--------------|-------------------|--|--|
| Connection in the | Connector                                 | Stop bracket | Total weight [kg] |  |  |
|                   | Connector                                 | β            | with two strands  |  |  |
|                   |                                           | 30°          | 601               |  |  |
|                   |                                           | 45°          | 886               |  |  |
| Schmalfläche      | Lifting Anchor (C. 40 mm 9 v. VCC 4 v. 40 | 60°          | 1135              |  |  |
| Schmairiache      | Lifting Anchor Ø 40 mm + 8 x VSS 6 x 60   | 75°          | 1311              |  |  |
|                   |                                           | β            | with n strands    |  |  |
|                   |                                           | 90°          | n x 688           |  |  |







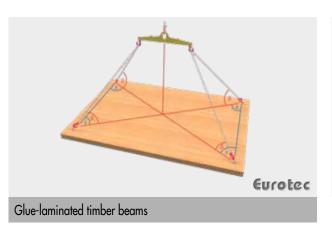
#### Notes:

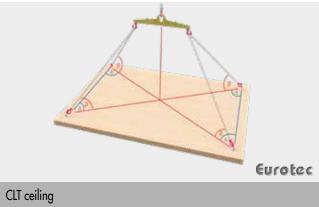
- The tables are based on the expert evaluation report entitled "Loadcarrying Capacity of Connections with E.u.r.o. Tec Lifting Anchors" by H.J. Blaß, 30/03/2020.
- The tables illustrate an example of "Lifting a standing wall or beam".
- The connectors must be screwed into the components' centre plane flush, plus perpendicular to the surfaces of the narrow sides and side or end grain areas.
- According to the above-mentioned expert report, a vibration coefficient of min.  $\varphi = 2.0$  must be used.
- The values stated in the table take a vibration coefficient of  $\varphi = 2.0$  into account. For deviating vibration coefficients, the table values must be multiplied by the factor  $2.0/\varphi$ .
- Whether transverse tensile reinforcement is required for lifting depends on the component to be lifted and must be decided by the manufacturer of the component to be lifted.





### Lift the horizontal ceiling

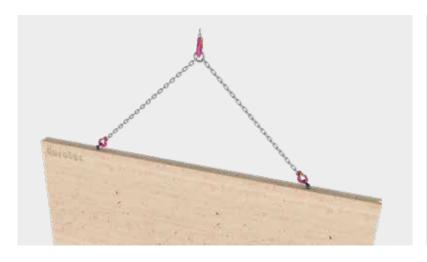

|                   | Glue-laminated timber beams |              |                     |                   |  |  |  |
|-------------------|-----------------------------|--------------|---------------------|-------------------|--|--|--|
| C 22 2 1          | C                           | Stop bracket | Ground plan bracket | Total weight [kg] |  |  |  |
| Connection in the | Connector                   | β            | δ                   | with four strands |  |  |  |
|                   |                             | •            | 5°                  | 1308              |  |  |  |
|                   |                             |              | 15°                 | 1229              |  |  |  |
|                   |                             |              | 25°                 | 1114              |  |  |  |
|                   |                             | 30°          | 35°                 | 1000              |  |  |  |
|                   |                             |              | 45°                 | 905               |  |  |  |
|                   |                             |              | 60°                 | 804               |  |  |  |
|                   |                             |              | 75°                 | 749               |  |  |  |
|                   |                             |              | 5°                  | 1859              |  |  |  |
|                   |                             |              | 15°                 | 1838              |  |  |  |
|                   |                             |              | 25°                 | 1704              |  |  |  |
|                   |                             | 45°          | 35°                 | 1563              |  |  |  |
|                   |                             |              | 45°                 | 1439              |  |  |  |
|                   |                             |              | 60°                 | 1301              |  |  |  |
|                   |                             |              | 75°                 | 1222              |  |  |  |
|                   |                             |              | 5°                  | 1858              |  |  |  |
|                   |                             |              | 15°                 | 1858              |  |  |  |
|                   |                             | 60°          | 25°                 | 1858              |  |  |  |
|                   |                             |              | 35°                 | 1858              |  |  |  |
|                   | Lifting Anchor Ø 40 mm      |              | 45°                 | 1858              |  |  |  |
| Side area         | +                           |              | 60°                 | 1858              |  |  |  |
|                   | 8 x VSS 6 x 60              |              | 75°                 | 1830              |  |  |  |
|                   |                             | 75°          | 5°                  | 1858              |  |  |  |
|                   |                             |              | 15°                 | 1859              |  |  |  |
|                   |                             |              | 25°                 | 1859              |  |  |  |
|                   |                             |              | 35°                 | 1858              |  |  |  |
|                   |                             |              | 45°                 | 1858              |  |  |  |
|                   |                             |              | 60°                 | 1858              |  |  |  |
|                   |                             | •            | 75°                 | 1858              |  |  |  |
|                   |                             | β            | δ                   | with two strands  |  |  |  |
|                   |                             | 30°          | 0°                  | 659               |  |  |  |
|                   |                             |              | 90°                 | 366               |  |  |  |
|                   |                             | 45°          | 0°                  | 929               |  |  |  |
|                   |                             |              | 90°                 | 598               |  |  |  |
|                   |                             | 60°          | 0°                  | 929               |  |  |  |
|                   |                             |              | 90°                 | 900               |  |  |  |
|                   |                             | 75°          | 0°                  | 929               |  |  |  |
|                   |                             |              | 90°                 | 929               |  |  |  |
|                   |                             | β            | δ                   | with n strands    |  |  |  |
|                   |                             | 90°          | 0°                  | n x 464           |  |  |  |
|                   |                             |              |                     | Page 0 of 11      |  |  |  |




|                   | CLT ceiling            |              |                     |                   |  |  |  |
|-------------------|------------------------|--------------|---------------------|-------------------|--|--|--|
| Commention in the | Commonton              | Stop bracket | Ground plan bracket | Total weight [kg] |  |  |  |
| Connection in the | Connector              | β            | δ                   | with four strands |  |  |  |
|                   |                        |              | 5°                  | 1193              |  |  |  |
|                   |                        |              | 15°                 | 1121              |  |  |  |
|                   |                        |              | 25°                 | 1015              |  |  |  |
|                   |                        | 30°          | 35°                 | 911               |  |  |  |
|                   |                        |              | 45°                 | 824               |  |  |  |
|                   |                        |              | 60°                 | 732               |  |  |  |
|                   |                        |              | 75°                 | 682               |  |  |  |
|                   |                        |              | 5°                  | 1762              |  |  |  |
|                   |                        |              | 15°                 | 1683              |  |  |  |
|                   |                        |              | 25°                 | 1559              |  |  |  |
|                   |                        | 45°          | 35°                 | 1429              |  |  |  |
|                   |                        |              | 45°                 | 1314              |  |  |  |
|                   |                        |              | 60°                 | 1187              |  |  |  |
|                   |                        |              | 75°                 | 1091              |  |  |  |
|                   |                        | 60°          | 5°                  | 2262              |  |  |  |
|                   |                        |              | 15°                 | 2205              |  |  |  |
|                   |                        |              | 25°                 | 2108              |  |  |  |
|                   |                        |              | 35°                 | 1995              |  |  |  |
|                   | Lifting Anchor Ø 40 mm |              | 45°                 | 1887              |  |  |  |
| Side area         | +                      |              | 60°                 | 1756              |  |  |  |
|                   | 8 x VSS 6 x 60         |              | 75°                 | 1649              |  |  |  |
|                   |                        |              | 5°                  | 2620              |  |  |  |
|                   |                        |              | 15°                 | 2600              |  |  |  |
|                   |                        |              | 25°                 | 2564              |  |  |  |
|                   |                        | 75°          | 35°                 | 2518              |  |  |  |
|                   |                        |              | 45°                 | 2469              |  |  |  |
|                   |                        |              | 60°                 | 2401              |  |  |  |
|                   |                        | 0            | 75°                 | 2339              |  |  |  |
|                   |                        | β            | δ                   | with two strands  |  |  |  |
|                   |                        | 30°          | 00                  | 1203              |  |  |  |
|                   |                        |              | 90°                 | 333               |  |  |  |
|                   |                        | 45°          | 00                  | 1773              |  |  |  |
|                   |                        |              | 90°                 | 545               |  |  |  |
|                   |                        | 60°          | 00                  | 2270              |  |  |  |
|                   |                        |              | 90°                 | 824               |  |  |  |
|                   |                        | 75°          | 0°                  | 2623              |  |  |  |
|                   |                        |              | 90°                 | 1169              |  |  |  |
|                   |                        | β            | δ                   | with n strands    |  |  |  |
|                   |                        | 90°          | 0°                  | n x 688           |  |  |  |

Page 10 of 11








#### Notes:

- The tables are based on the expert evaluation report entitled "Loadcarrying Capacity of Connections with E.u.r.o. Tec Lifting Anchors" by H.J. Blaß, 30/03/2020.
- The tables illustrate an example of "Lifting of horizontal ceiling elements".
- The connectors must be attached in flush with the surface, plus perpendicular to the component surface.
- According to the above-mentioned expert report, a vibration coefficient of min.  $\varphi = 2.0$  must be used.
- The values stated in the table take a vibration coefficient of φ = 2.0 into account. For deviating vibration coefficients, the table values must be multiplied by the factor 2.0/φ.
- For this type of use, load beams must be used.

### **Application image**





If you are not familiar with how this product is used, and particularly with the product's intended use, please contact our Application Technology department (technik@eurotec.team).